[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: ::
Back to the articles list Back to browse issues page
True orthophoto mosaic generation: a simple and fast method
Maryam Sajadian *, Masoud Varshosaz
Abstract:   (26 Views)
UAV-based images are now widely used to generate large-scale orthophoto mosaics. The generation of an orthophoto mosaic is divided into two stages: image registration and image stitching. Using the DSM associated with each image, orthophotos are generated throughout the image registration. The single orthophotos generated are then joined to each other step by step in the second stage, utilizing various methods of image stitching. Image stitching methods depend on the complex and challenging processes of image matching and seamline determination. In addition, the registration and stitching of images in UAV-based mapping projects with a significant number of images is a time-consuming process. In this study, a straightforward method is provided for creating large-scale true orthophoto mosaics from UAV-based images without the requirement to generate single orthophotos, image registration and seamline network determination. Instead of registrating the images and then stitching them step-by-step, this method processes the DSM of the entire area and all of the images simultaneously. First, for each DSM point, the optimal image is determined from among all the visible images based on an optimization procedure. Optimization is based on two criteria: distance from nadir point and distance from the projection center. Using the determined optimal images, the differential rectification procedure is then run, and the orthophoto mosaic cells are filled. The results of this investigation demonstrated that the proposed method yielded a mosaic with minimal changes along the seamline. In addition, the proposed method is compared with the conventional orthophoto mosaic production method, which is based on image matching and determination of seamlines. Evaluations indicate that the proposed method is able to increase the production rate of orthophoto mosaic by 39% and 45% in dataset 1 and 2 respectively. Additionally, the geometric accuracy calculated using the checkpoints in the orthophoto mosaic generated by the suggested method has decreased by an average of 2 cm, indicating more precise results.
Article number: 6
Keywords: UAV images, Deferential rectification, Orthophoto mosaic, Digital Surface Model (DSM).
     
Type of Study: Research | Subject: Photo&RS
References
1. Liu, Y., Zheng, X., Ai, G., Zhang, Y., and Zuo, Y. (2018). "Generating a high-precision true digital orthophoto map based on UAV images." ISPRS International Journal of Geo-Information. Vol. 7, No. 9, PP. 333. [DOI:10.3390/ijgi7090333]
2. Ludwig, M., M Runge, C., Friess, N., Koch, T. L., Richter, S., Seyfried, S., et al. (2020). "Quality assessment of photogrammetric methods-A workflow for reproducible UAS orthomosaics." Remote Sensing. Vol. 12, No. 22, PP. 3831. [DOI:10.3390/rs12223831]
3. Lin, Y.-C., Zhou, T., Wang, T., Crawford, M., and Habib, A. (2021). "New orthophoto generation strategies from UAV and ground remote sensing platforms for high-throughput phenotyping." Remote Sensing. Vol. 13, No. 5, PP. 860. [DOI:10.3390/rs13050860]
4. Shoab, M., Singh, V. K., and Ravibabu, M. (2021). "High-precise true digital orthoimage generation and accuracy assessment based on UAV images." Journal of the Indian Society of Remote Sensing. Vol. 50, No, 4, PP. 613-622. [DOI:10.1007/s12524-021-01364-z]
5. Wang, Q., Yan, L., Sun, Y., Cui, X., Mortimer, H., and Li, Y. (2018). "True orthophoto generation using line segment matches." The Photogrammetric Record. Vol. 33, No. 161, PP. 113-130. [DOI:10.1111/phor.12229]
6. Gharibi, H., and Habib, A. (2018). "True orthophoto generation from aerial frame images and LiDAR data: An update." Remote Sensing. Vol. 10, No. 4, PP. 581. [DOI:10.3390/rs10040581]
7. Sheng, Y. (2007). "Minimising algorithm‐induced artefacts in true ortho‐image generation: a direct method implemented in the vector domain." The Photogrammetric Record. Vol. 22, No. 118, PP. 151-163. [DOI:10.1111/j.1477-9730.2007.00425.x]
8. Habib, A. F., Bang, K.-I., Kim, C., and Shin, S. (2006). "True Ortho-photo Generation from High Resolution Satellite Imagery." In Innovations in 3D Geo Information Systems. Springer, Berlin, Heidelberg. [DOI:10.1007/978-3-540-36998-1_49]
9. Nielsen, M.Ø. (2004). "True orthophoto generation." Master's Thesis, Technical university of denmark, Lyngby, Denmark.
10. Li, X., Feng, R., Guan, X., Shen, H., and Zhang, L. (2019). "Remote sensing image mosaicking: Achievements and challenges." IEEE Geoscience and Remote Sensing Magazine. Vol. 7, No. 4, PP. 8-22. [DOI:10.1109/MGRS.2019.2921780]
11. Pellikka, M., and Lahtinen, V. (2021). "A robust method for image stitching." Pattern Analysis and Applications. Vol. 24, No. 4, PP. 1847-1858. [DOI:10.1007/s10044-021-01005-8]
12. Xu, Q., Chen, J., Luo, L., Gong, W., and Wang, Y. (2021). "UAV image stitching based on mesh-guided deformation and ground constraint." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Vol. 14, PP. 4465-4475. [DOI:10.1109/JSTARS.2021.3061505]
13. Zhao, Q., Ma, Y., Zhu, C., Yao, C., Feng, B., and Dai, F. (2021). "Image stitching via deep homography estimation." Neurocomputing, Vol. 450, PP. 219-229. [DOI:10.1016/j.neucom.2021.03.099]
14. Zhu, H., Jiang, Y., Zhang, C. and Liu, S. (2022). "Research on Mosaic Method of UAV Low-altitude Remote Sensing Image based on SIFT and SURF." In Journal of Physics: Conference Series. Vol. 2203, No. 1, PP. 012027. IOP Publishing. [DOI:10.1088/1742-6596/2203/1/012027]
15. Goh, J., Phang, S., and Chew, W. (2021). "Real-time and automatic map stitching through aerial images from UAV." In Journal of Physics: Conference Series. Vol. 2120, No. 1, PP. 012025. IOP Publishing. [DOI:10.1088/1742-6596/2120/1/012025]
16. Yuan, Y., Fang, F., and Zhang, G. (2020). "Superpixel-based seamless image stitching for UAV images." IEEE Transactions on Geoscience and Remote sensing. Vol. 59, No. 2, PP- 1565-1576. [DOI:10.1109/TGRS.2020.2999404]
17. Pham, N. T., Park, S., and Park, C.-S. (2021). "Fast and Efficient Method for Large-Scale Aerial Image Stitching." IEEE Access. Vol. 9, PP. 127852-127865. [DOI:10.1109/ACCESS.2021.3111203]
18. Gómez-Reyes, J. K., Benítez-Rangel, J. P., Morales-Hernández, L. A., Resendiz-Ochoa, E., and Camarillo-Gomez, K. A. (2022). "Image Mosaicing Applied on UAVs Survey." Applied Sciences. Vol. 12, No. 5, PP. 2729. [DOI:10.3390/app12052729]
19. Chen, Y., Briese, C., Karel, W., and Pfeifer, N. (2014). "True orthophoto generation using multi-view aerial images." The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. 40, No. 3, PP. 67. [DOI:10.5194/isprsarchives-XL-3-67-2014]
20. Chen, G., Chen, S., Li, X., Zhou, P., and Zhou, Z. (2018). "Optimal seamline detection for orthoimage mosaicking based on DSM and improved JPS algorithm." Remote Sensing. Vol. 10, No. 6, PP. 821. [DOI:10.3390/rs10060821]
21. Chen, J., Li, Z., Peng, C., Wang, Y., and Gong, W. (2022). "UAV Image Stitching Based on Optimal Seam and Half-Projective Warp." Remote Sensing. Vol. 14, No. 5, PP.1068. [DOI:10.3390/rs14051068]
22. Chon, J., Kim, H., and Lin, C.-S. (2010). "Seam-line determination for image mosaicking: A technique minimizing the maximum local mismatch and the global cost." ISPRS Journal of Photogrammetry and Remote Sensing. Vol. 65, No. 1, PP. 86-92. [DOI:10.1016/j.isprsjprs.2009.09.001]
23. Huang, C.-M., Lin, S.-W., and Chen, J.-H. (2015). "Efficient image stitching of continuous image sequence with image and seam selections.: IEEE Sensors Journal. Vol. 15, No. 10, PP. 5910-5918. [DOI:10.1109/JSEN.2015.2449879]
24. Laaroussi, S., Baataoui, A., Halli, A., and Khalid, S. (2018). "A dynamic mosaicking method based on histogram equalization for an improved seamline." Procedia Computer Science. Vol. 127, PP. 344-352. [DOI:10.1016/j.procs.2018.01.131]
25. Li, M., Li, D., Guo, B., Li, L., Wu, T., qnd Zhang, W. (2018). "Automatic seam-line detection in UAV remote sensing image mosaicking by use of graph cuts." ISPRS International Journal of Geo-Information. Vol. 7, No. 9, PP. 361. [DOI:10.3390/ijgi7090361]
26. Manandhar, P., Jalil, A., AlHashmi, K., and Marpu, P. (2021). "Automatic Generation of Seamless Mosaics Using Invariant Features." Remote Sensing. Vol. 13, No. 16, PP. 3094. [DOI:10.3390/rs13163094]
27. Nguyen, T. L., Byun, Y., Han, D., and Huh, J. (2018). "Efficient seamline determination for UAV image mosaicking using edge detection." Remote Sensing Letters. Vol. 9, No. 8, PP. 763-769. [DOI:10.1080/2150704X.2018.1475772]
28. Qu, Z., Wang, T., An, S., and Liu, L. (2018). "Image seamless stitching and straightening based on the image block." IET Image Processing. Vol. 12, No. 8, PP. 1361-1369. [DOI:10.1049/iet-ipr.2017.1064]
29. Tian, J., Li, X., Duan, F., Wang, J., and Ou, Y. (2016). "An efficient seam elimination method for UAV images based on wallis dodging and gaussian distance weight enhancement." Sensors. Vol. 16, No. 5, PP. 662. [DOI:10.3390/s16050662]
30. Wang, M., Yuan, S., Pan, J., Fang, L., Zhou, Q., and Yang, G. (2016). "Seamline determination for high resolution orthoimage mosaicking using watershed segmentation." Photogrammetric Engineering & Remote Sensing. Vol. 82, No. 2, PP. 121-133. [DOI:10.14358/PERS.82.2.121]
31. Xandri, R., Pérez-Aragüés, F., Palà, V., and Arbiol, R. (2005). "Automatic generation of seamless mosaics over extensive areas from high resolution imagery." World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI). Jul 13, Orlando.
32. Yang, Y., Gao, Y., Li, H., and Han, Y. (2011). "An algorithm for remote sensing image mosaic based on valid area." 2011 International Symposium on Image and Data Fusion. Aug 9. [DOI:10.1109/ISIDF.2011.6024278]
33. Yuan, S., Yang, K., Li, X., and Cai, H. (2020). "Automatic Seamline Determination for Urban Image Mosaicking Based on Road Probability Map from the D-LinkNet Neural Network." Sensors. Vol. 20, No. 7, PP. 1832. [DOI:10.3390/s20071832]
34. Hsu, S., Sawhney, H. S., and Kumar, R. (2002). "Automated mosaics via topology inference." IEEE Computer Graphics and Applications. Vol. 22, No. 02, PP. 44-54. [DOI:10.1109/38.988746]
35. Li, L., Yao, J., Lu, X., Tu, J., and Shan, J. (2016). "Optimal seamline detection for multiple image mosaicking via graph cuts." ISPRS Journal of Photogrammetry and Remote Sensing. Vol. 113, PP. 1-16. [DOI:10.1016/j.isprsjprs.2015.12.007]
36. Li, L., Tu, J., Gong, Y., Yao, J., and Li, J. (2019). "Seamline network generation based on foreground segmentation for orthoimage mosaicking." ISPRS Journal of Photogrammetry and Remote Sensing. Vol. 148, PP. 41-53. [DOI:10.1016/j.isprsjprs.2018.12.002]
37. Pan, J., Wang, M., Li, D., and Li, J. (2009). "Automatic generation of seamline network using area Voronoi diagrams with overlap." IEEE Transactions on Geoscience and Remote sensing. Vol. 47, No, 6, PP. 1737-1744. [DOI:10.1109/TGRS.2008.2009880]
38. Pan, J., Wang, M., Ma, D., Zhou, Q., and Li, J. (2013). "Seamline network refinement based on area Voronoi diagrams with overlap." IEEE Transactions on Geoscience and Remote sensing. Vol. 52, No. 3, PP. 1658-1666. [DOI:10.1109/TGRS.2013.2253110]
39. Pan, J., Fang, Z., Chen, S., Ge, H., Hu, F., and Wang, M. (2018). "An improved seeded region growing-based seamline network generation method." Remote Sensing. Vol. 10, No. 7, PP. 1065. [DOI:10.3390/rs10071065]
40. de Oliveira, H. C., Dal Poz, A. P., Galo, M., and Habib, A. F. (2018). "Surface gradient approach for occlusion detection based on triangulated irregular network for true orthophoto generation." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Vol. 11, No. 2, PP. 443-457. [DOI:10.1109/JSTARS.2017.2786162]
41. Hu, Y., Stanley, D., and Xin, Y. (2016). "True ortho generation of urban area using high resolution aerial photos." ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences 3, No. 4. May. [DOI:10.5194/isprs-annals-III-4-3-2016]
42. Boccardo, P., Dequal, S., Lingua, A., and Rinaudo, F. (2001). "True digital orthophoto for architectural and archaeological applications." International Archives of Photogrammetry and Remote Sensing. Vol. 34, No. 5/W1, PP. 50-55.
43. Balletti, C., Guerra, F., Lingua, A., and Rinaudo, F. (2003). "True Digital Orthophoto of The San Marco Basilica. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences." Vol. 34, No. 5, PP. W12.
44. Biasion, A., Dequal, S., and Lingua, A. (2004). "A new procedure for the automatic production of true orthophotos." The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. 35, PP. 1682-1777.
45. Hanusch, T. (2010). "Texture mapping and true orthophoto generation of 3D objects." PhD thesis. ETH Zurich.
46. Zhang, Y., Zhang, M., Du, S., Zou, Z., and Fan, C. (2018). "Seamline optimisation for urban aerial ortho‐image mosaicking using graph cuts." The Photogrammetric Record. Vol. 33, No. 161, PP. 131-147. [DOI:10.1111/phor.12232]
47. Zhou, G., Wang, Y., Yue, T., Ye, S., and Wang, W. (2016). "Building occlusion detection from ghost images." IEEE Transactions on Geoscience and Remote sensing. Vol. 55, No. 2, PP. 1074-1084. [DOI:10.1109/TGRS.2016.2619184]
48. Habib, A. F., Kim, E.-M., and Kim, C.-J. (2007). New methodologies for true orthophoto generation." Photogrammetric Engineering & Remote Sensing. Vol. 73, No. 1, PP. 25-36. [DOI:10.14358/PERS.73.1.25]
49. Bang, K., Habib, A. F., Shin, S., and Kim, K. (2007). "Comparative analysis of alternative methodologies for true ortho-photo generation from high resolution satellite imagery." ASPRS annual. May 7.
50. Barazzetti, L., Brumana, R., Oreni, D., Previtali, M., and Roncoroni, F. (2014). "True-orthophoto generation from UAV images: implementation of a combined photogrammetric and computer vision approach." ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences 2, No. 5. May 28. [DOI:10.5194/isprsannals-II-5-57-2014]
51. Schickier, W., and Thorpe, A. (1998). "Operational procedure for automatic true orthophoto generation." International Archives of Photogrammetry and Remote Sensing. Vol. 32, PP. 527-532.
52. Amhar, F., Jansa, J., and Ries, C. (1998). "The generation of true orthophotos using a 3D building model in conjunction with a conventional DTM." International Archives of Photogrammetry and Remote Sensing. Vol. 32, PP. 16-22.
53. Ettarid, M., M'h, A. A., and Aloui, R. (2005). "Digital true orthophotos generation."
54. Geoinformatics FIG Working Week 2005 and GSDI-8 Cairo, April 16-21, Egypt.
55. Haggag, M., Zahran, M., and Salah, M. (2018). "Towards automated generation of true orthoimages for urban areas." American Journal of Geographic Information System, Vol. 7, No. 2, PP. 67-74.
56. de Oliveira, H. C., Galo, M., and Dal Poz, A. P. (2015). "Height-gradient-based method for occlusion detection in true orthophoto generation." IEEE Geoscience and Remote Sensing Letters. Vol. 12, No. 11, PP. 2222-2226. [DOI:10.1109/LGRS.2015.2459671]
57. Dostal, C., and Yamafune, K. (2018). "Photogrammetric texture mapping: A method for increasing the Fidelity of 3D models of cultural heritage materials." Journal of Archaeological Science: Reports 18. PP. 430-436. [DOI:10.1016/j.jasrep.2018.01.024]
58. Hu, S., Li, Z., Wang, S., Ai, M., and Hu, Q. (2020). "A texture selection approach for cultural artifact 3D reconstruction considering both geometry and radiation quality." Remote Sensing. Vol. 12, No. 16, PP. 2521. [DOI:10.3390/rs12162521]
59. Zheng, M., Zhou, S., Xiong, X., and Zhu, J. (2017). "A novel orthoimage mosaic method using the weighted A* algorithm for UAV imagery." Computers & Geosciences, Vol. 109, PP. 238-246. [DOI:10.1016/j.cageo.2017.08.004]
60. Zheng, M., Xiong, X., and Zhu, J. (2017). "Automatic seam-line determination for orthoimage mosaics using edge-tracking based on a DSM." Remote Sensing Letters. Vol. 8, No.10, No. 977-986. [DOI:10.1080/2150704X.2017.1343509]
61. Ma, H.-c., and Sun, J. (2011). "Intelligent optimization of seam-line finding for orthophoto mosaicking with LiDAR point clouds." Journal of Zhejiang University SCIENCE C. Vol. 12, No. 5, PP. 417-429. [DOI:10.1631/jzus.C1000235]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology