1. Kreveld, M. van (2020). Geometric Primitives and Algorithms. The Geographic Information Science & Technology Body of Knowledge (2nd Quarter 2020 Edition), John P. Wilson (ed.). DOI: 10.22224/gistbok/2020.2.6. [ DOI:10.22224/gistbok/2020.2.6] 2. Panigrahi N. (2014). "Computational Geometry and Its Application to GIS", CRC Press, ISBN 13: 9781482223149. [ DOI:10.1201/b171478] 3. Coxeter H. S. M. (1998):"NonEuclidean Geometry", Sixth Edition, The Mathematical Association of America. ISBN 0883855224. 4. Wolfe H. E. (2014):"Introduction To NonEuclidean Geometry", Nabu Press, ISBN 13: 9781294451495.. 5. Hilbert D. (1950):"The Foundations of Geometry", translated by: E. I. Townsend, Illinois. 6. Ryan P.J. (2006):"Euclidean and NonEuclidean Geometry An Analytic Approach", Cambridge University Press, 15th Printing. 7. Dunham, D. (2012):" M.C. Escher's Use of the Poincaré Models of Hyperbolic Geometry", In: Bruter, C. (eds) Mathematics and Modern Art. Springer Proceedings in Mathematics, vol 18. Springer,
https://doi.org/10.1007/9783642244971_7 [ DOI:10.1007/9783642244971_7.] 8. Escher M.C. (Accessed: 2022):"Circle Limit IV", https://mcescher.com/gallery/mathematical/#. 9. Nickel, M., & Kiela, D. (2017):"Poincaré embeddings for learning hierarchical representations", Advances in neural information processing systems, 30. 10. Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017):"Geometric deep learning: going beyond euclidean data", IEEE Signal Processing Magazine, 34(4), 1842. [ DOI:10.1109/MSP.2017.2693418] 11. Baryshnikov Y. (Accessed; 2022):"Online Presentation", https://faculty.math.illinois.edu/~ymb/talks/m499/m499.html#/. 12. Stahl S. (2008):" A Gateway to Modern Geometry: The Poincaré Halfplane", Jones and Bartlett Publishers, ISBN 9780763753818. 13. Gullberg J. (1997):" Mathematics From the Birth of Numbers", Norton, ISBN 9780393040029. 14. Aggarwal C.C. (2011):"Social Network Data Analytics", Springer Verlag, ISBN: 9781441984623. [ DOI:10.1007/9781441984623_1] 15. PopescuPampu P. (2016):"What is the Genus?", Springer Verlag, ISBN 9783319423. [ DOI:10.1007/9783319423128] 16. Coxeter H. S. M. (1973):" Poincaré's Proof of Euler's Formula",. Ch. 9 in Regular Polytopes, 3rd ed. New York: Dover, pp. 165172. 17. Do Carmo M. (1976):" Differential Geometry of Curves and Surfaces", Prentice Hall. 18. Kumar, Hradesh & Kumar, Sanjeev. (2015):" Investigating Social Network as Complex Network and Dynamics of User Activities", International Journal of Computer Applications, 125(7), 1318. 10.5120/ijca2015905952. [ DOI:10.5120/ijca2015905952] 19. Gao, H., Tang, J., Liu, H.(2012):" Exploring socialhistorical ties on locationbased social networks", In: Proceedings of the Sixth International Conference on Weblogs and Social Media.
