[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: ::
Back to the articles list Back to browse issues page
Local gravity field modeling using gravity difference observations along the line of sight of the GRACE-FO satellites and adjusted spherical cap harmonic basis functions
Mohsen Feizi *, Mahdi Raoofian Naeeni, Anahita Hatami
Abstract:   (29 Views)
In this study, a regional model for the Earth's gravity field across Antarctica is presented. So, observations of gravity difference along the line of sight of the satellite (LGD), obtained from the GRACE-FO mission, are used, and the local gravity model is calculated based on the Adjusted Spherical Cap Harmonics (ASCH) basis functions. in this method, by introducing a scale factor and applying a mapping to the domain and boundary of the problem, we can use legendre functions of the integer degree and order (similar to global harmonics). According to the characteristics of basic functions, first, a new method for converting LGD data to the ASCH domain and calculating harmonic coefficients is provided. In order to reduce the edge error effect, the gravity grid data beyond the boundary of the studied area is generated using a geopotential model. To verify the validity of the study, a set of control points are selected from the LGD data and in the path of the profiles (orbital paths of the GRACE satellite over the studied area) to verify the accuracy of the local model. Therefore, when the results of the local model are compared with the control points, the root mean square error is equal to 0.9 (nm/s2). which is comparable to the accuracy of LGD data of 0.15 nm/s2. On the other hand, the root mean square error of global geopotential models against LGD data is equal to 6 nm/s2. Because of this, the local harmonic function (ASCH) can get more information from the gravity field and make a more accurate model of the local geopotential.
Article number: 10
Keywords: local gravity field modeling, Adjusted spherical cap harmonic basis function, line-of-sight gravity difference observations, GRACE-FO satellite
Type of Study: Research | Subject: Geo&Hydro
1. Thébault, E., J. Schott, and M. Mandea, Revised spherical cap harmonic analysis (R‐SCHA): Validation and properties. Journal of Geophysical Research: Solid Earth, 2006. 111(B1). [DOI:10.1029/2005JB003836]
2. Haines, G., Magsat vertical field anomalies above 40° N from spherical cap harmonic analysis. Journal of Geophysical Research: Solid Earth, 1985. 90(B3): p. 2593-2598. [DOI:10.1029/JB090iB03p02593]
3. De Santis, A., Conventional spherical harmonic analysis for regional modelling of the geomagnetic field. Geophysical research letters, 1992. 19(10): p. 1065-1067. [DOI:10.1029/92GL01068]
4. Younis, G., Regional gravity field modeling with adjusted spherical cap harmonics in an integrated approach. 2013: TUprints-TU Darmstadt publication service.
5. Younis, G., Local earth gravity/potential modeling using ASCH. Arabian Journal of Geosciences, 2015. 8(10): p. 8681-8685. [DOI:10.1007/s12517-014-1767-2]
6. Raoofian Naeeni, M. and M. Feizi, Regional Gravity Field Modelling using Adjausted Spherical Cap Harmonic Analysis. Journal of Geomatics Science and Technology, 2017. 7(1): p. 115-124.
7. Feizi, M. and M. Raoofian Naeeni, Local gravity field modeling using basis functions of harmonic nature and vector airborne Gravimetry, Case Study: Gravity field modeling over north-east of Tanzania region. Journal of the Earth and Space Physics, 2018. 44(3): p. 523-534.
8. Feizi, M., M. Raoofian-Naeeni, and S.-C. Han, Comparison of spherical cap and rectangular harmonic analysis of airborne vector gravity data for high-resolution (1.5 km) local geopotential field models over Tanzania. Geophysical Journal International, 2021. 227(3): p. 1465-1479. [DOI:10.1093/gji/ggab280]
9. Schmidt, M., et al., Regional high‐resolution spatiotemporal gravity modeling from GRACE data using spherical wavelets. Geophysical Research Letters, 2006. 33(8). [DOI:10.1029/2005GL025509]
10. Schmidt, M., et al., Regional gravity modeling in terms of spherical base functions. Journal of Geodesy, 2007. 81(1): p. 17-38. [DOI:10.1007/s00190-006-0101-5]
11. Han, S.C. and F.J. Simons, Spatiospectral localization of global geopotential fields from the Gravity Recovery and Climate Experiment (GRACE) reveals the coseismic gravity change owing to the 2004 Sumatra‐Andaman earthquake. Journal of Geophysical Research: Solid Earth, 2008. 113(B1). [DOI:10.1029/2007JB004927]
12. Klees, R., et al., A data-driven approach to local gravity field modelling using spherical radial basis functions. Journal of Geodesy, 2008. 82(8): p. 457-471. [DOI:10.1007/s00190-007-0196-3]
13. Wittwer, T. Regional gravity field modelling with radial basis functions. in PUBLICATIONS ON GEODESY 72. 2009. Citeseer. [DOI:10.54419/hboxky]
14. Weigelt, M., W. Keller, and M. Antoni. On the comparison of radial base functions and single layer density representations in local gravity field modelling from simulated satellite observations. in VII Hotine-Marussi Symposium on Mathematical Geodesy. 2012. Springer. [DOI:10.1007/978-3-642-22078-4_29]
15. Bucha, B., et al., Global and regional gravity field determination from GOCE kinematic orbit by means of spherical radial basis functions. Surveys in Geophysics, 2015. 36(6): p. 773-801. [DOI:10.1007/s10712-015-9344-0]
16. Naeimi, M., J. Flury, and P. Brieden, On the regularization of regional gravity field solutions in spherical radial base functions. Geophysical Journal International, 2015. 202(2): p. 1041-1053. [DOI:10.1093/gji/ggv210]
17. Naeimi, M. and J. Bouman, Contribution of the GOCE gradiometer components to regional gravity solutions. Geophysical Journal International, 2017. 209(2): p. 559-569. [DOI:10.1093/gji/ggx040]
18. Pitoňák, M., M. Šprlák, and R. Tenzer, Possibilities of inversion of satellite third-order gravitational tensor onto gravity anomalies: a case study for central Europe. Geophysical Journal International, 2017. 209(2): p. 799-812. [DOI:10.1093/gji/ggx041]
19. Haines, G., Spherical cap harmonic analysis. Journal of Geophysical Research: Solid Earth, 1985. 90(B3): p. 2583-2591. [DOI:10.1029/JB090iB03p02583]
20. De Santis, A. and J. Torta, Spherical cap harmonic analysis: a comment on its proper use for local gravity field representation. Journal of Geodesy, 1997. 71(9): p. 526-532. [DOI:10.1007/s001900050120]
21. Liu, X., Global gravity field recovery from satellite-to-satellite tracking data with the acceleration approach. 2008. [DOI:10.54419/rmsi6z]
22. Ghobadi‐Far, K., et al., A transfer function between line‐of‐sight gravity difference and GRACE intersatellite ranging data and an application to hydrological surface mass variation. Journal of Geophysical Research: Solid Earth, 2018. 123(10): p. 9186-9201. [DOI:10.1029/2018JB016088]
23. Han, S.C., Determination and localized analysis of intersatellite line of sight gravity difference: Results from the GRAIL primary mission. Journal of Geophysical Research: Planets, 2013. 118(11): p. 2323-2337. [DOI:10.1002/2013JE004402]
24. Šprlák, M., S.-C. Han, and W. Featherstone, Integral inversion of GRAIL inter-satellite gravitational accelerations for regional recovery of the lunar gravitational field. Advances in Space Research, 2020. 65(1): p. 630-649. [DOI:10.1016/j.asr.2019.10.015]
25. Pierre-Louis, K., H. Fountain, and D. Lu, A Satellite Lets Scientists See Antarctica's Melting Like Never Before, in The New York Times. 2020.
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology