1. Thébault, E., J. Schott, and M. Mandea, Revised spherical cap harmonic analysis (R‐SCHA): Validation and properties. Journal of Geophysical Research: Solid Earth, 2006. 111(B1). [ DOI:10.1029/2005JB003836] 2. Haines, G., Magsat vertical field anomalies above 40° N from spherical cap harmonic analysis. Journal of Geophysical Research: Solid Earth, 1985. 90(B3): p. 25932598. [ DOI:10.1029/JB090iB03p02593] 3. De Santis, A., Conventional spherical harmonic analysis for regional modelling of the geomagnetic field. Geophysical research letters, 1992. 19(10): p. 10651067. [ DOI:10.1029/92GL01068] 4. Younis, G., Regional gravity field modeling with adjusted spherical cap harmonics in an integrated approach. 2013: TUprintsTU Darmstadt publication service. 5. Younis, G., Local earth gravity/potential modeling using ASCH. Arabian Journal of Geosciences, 2015. 8(10): p. 86818685. [ DOI:10.1007/s1251701417672] 6. Raoofian Naeeni, M. and M. Feizi, Regional Gravity Field Modelling using Adjausted Spherical Cap Harmonic Analysis. Journal of Geomatics Science and Technology, 2017. 7(1): p. 115124. 7. Feizi, M. and M. Raoofian Naeeni, Local gravity field modeling using basis functions of harmonic nature and vector airborne Gravimetry, Case Study: Gravity field modeling over northeast of Tanzania region. Journal of the Earth and Space Physics, 2018. 44(3): p. 523534. 8. Feizi, M., M. RaoofianNaeeni, and S.C. Han, Comparison of spherical cap and rectangular harmonic analysis of airborne vector gravity data for highresolution (1.5 km) local geopotential field models over Tanzania. Geophysical Journal International, 2021. 227(3): p. 14651479. [ DOI:10.1093/gji/ggab280] 9. Schmidt, M., et al., Regional high‐resolution spatiotemporal gravity modeling from GRACE data using spherical wavelets. Geophysical Research Letters, 2006. 33(8). [ DOI:10.1029/2005GL025509] 10. Schmidt, M., et al., Regional gravity modeling in terms of spherical base functions. Journal of Geodesy, 2007. 81(1): p. 1738. [ DOI:10.1007/s0019000601015] 11. Han, S.C. and F.J. Simons, Spatiospectral localization of global geopotential fields from the Gravity Recovery and Climate Experiment (GRACE) reveals the coseismic gravity change owing to the 2004 Sumatra‐Andaman earthquake. Journal of Geophysical Research: Solid Earth, 2008. 113(B1). [ DOI:10.1029/2007JB004927] 12. Klees, R., et al., A datadriven approach to local gravity field modelling using spherical radial basis functions. Journal of Geodesy, 2008. 82(8): p. 457471. [ DOI:10.1007/s0019000701963] 13. Wittwer, T. Regional gravity field modelling with radial basis functions. in PUBLICATIONS ON GEODESY 72. 2009. Citeseer. [ DOI:10.54419/hboxky] 14. Weigelt, M., W. Keller, and M. Antoni. On the comparison of radial base functions and single layer density representations in local gravity field modelling from simulated satellite observations. in VII HotineMarussi Symposium on Mathematical Geodesy. 2012. Springer. [ DOI:10.1007/9783642220784_29] 15. Bucha, B., et al., Global and regional gravity field determination from GOCE kinematic orbit by means of spherical radial basis functions. Surveys in Geophysics, 2015. 36(6): p. 773801. [ DOI:10.1007/s1071201593440] 16. Naeimi, M., J. Flury, and P. Brieden, On the regularization of regional gravity field solutions in spherical radial base functions. Geophysical Journal International, 2015. 202(2): p. 10411053. [ DOI:10.1093/gji/ggv210] 17. Naeimi, M. and J. Bouman, Contribution of the GOCE gradiometer components to regional gravity solutions. Geophysical Journal International, 2017. 209(2): p. 559569. [ DOI:10.1093/gji/ggx040] 18. Pitoňák, M., M. Šprlák, and R. Tenzer, Possibilities of inversion of satellite thirdorder gravitational tensor onto gravity anomalies: a case study for central Europe. Geophysical Journal International, 2017. 209(2): p. 799812. [ DOI:10.1093/gji/ggx041] 19. Haines, G., Spherical cap harmonic analysis. Journal of Geophysical Research: Solid Earth, 1985. 90(B3): p. 25832591. [ DOI:10.1029/JB090iB03p02583] 20. De Santis, A. and J. Torta, Spherical cap harmonic analysis: a comment on its proper use for local gravity field representation. Journal of Geodesy, 1997. 71(9): p. 526532. [ DOI:10.1007/s001900050120] 21. Liu, X., Global gravity field recovery from satellitetosatellite tracking data with the acceleration approach. 2008. [ DOI:10.54419/rmsi6z] 22. Ghobadi‐Far, K., et al., A transfer function between line‐of‐sight gravity difference and GRACE intersatellite ranging data and an application to hydrological surface mass variation. Journal of Geophysical Research: Solid Earth, 2018. 123(10): p. 91869201. [ DOI:10.1029/2018JB016088] 23. Han, S.C., Determination and localized analysis of intersatellite line of sight gravity difference: Results from the GRAIL primary mission. Journal of Geophysical Research: Planets, 2013. 118(11): p. 23232337. [ DOI:10.1002/2013JE004402] 24. Šprlák, M., S.C. Han, and W. Featherstone, Integral inversion of GRAIL intersatellite gravitational accelerations for regional recovery of the lunar gravitational field. Advances in Space Research, 2020. 65(1): p. 630649. [ DOI:10.1016/j.asr.2019.10.015] 25. PierreLouis, K., H. Fountain, and D. Lu, A Satellite Lets Scientists See Antarctica's Melting Like Never Before, in The New York Times. 2020.
