[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 9, Issue 2 (12-2019) ::
JGST 2019, 9(2): 51-64 Back to browse issues page
Detection Dehshir Fault Lineaments Using Radar and Optical Remote Sensing Data
A. Amiri, A. Abdollahi Kakroodi *, M. Ghadimi
Abstract:   (1232 Views)
Introduction
Remote sensing satellite data has been widely used as a source of information for geologists on a regional scale. Detecting lineaments by remote sensing in desert and semi-desert areas where bedrock is fully visible can provide better results. Two types of lineaments are usually distinguishable by remote sensing data, namely: 1. Positive lineaments, including ridge and dyke bumps, and 2. Negative lineaments consisting of seams, cracks and faults. The purpose of this study is to detect the lineaments associated with the Fault, one of the active faults in central Iran, using optical, radar and altimetry data.
Materials and Methods
By examining the different bands of Landsat 8 satellite in order to select the appropriate band for extraction of lineaments, it was concluded that the shorter wavelength due to more penetration and better interaction with the ground surface phenomena would be more accurate. As a result, bands with wavelengths close to the wavelengths of Band 2 are used. After the necessary preprocessing, the filtering operation was performed, local sigma filtering was applied to all images (Asher, Landsat 8, DEM 12.5m and SRTM 30 m). The local sigma filter uses the local standard deviation calculated for the filter box to determine valid pixels within the filter window. This filter replaces the pixel value with the average calculated from valid pixels inside the filter box. In addition, Li filter were applied on radar images (Sentinel 1and Alos Palsar). In the present study, the automatic extraction of lineaments is based on two main calculations: first, the use of filters to detect edges, second, the information that gives us sudden changes in the value of neighboring pixels. Usually it is related to lineaments. The second stage reveals the lineaments
Results and discussion
In general, for fault detection, radar images are better than optical images. The DEM 12.5 m had the best accuracy among the other data sets. Among the optical images, Landsat 8 OLI sensor data with 30 m spatial resolution was more capable of fault detection. Sentinel-1 images in C band is more capable than Alos palsar L-band radar images. In the northern sections of the fault, the eastern plate of the Dehshir Fault, show an uplift. In the southern part of the fault the western plate of the fault is uplifted. The Dehshir fault moves in both horizontal and vertical directions.
Conclusion
In this study, using the remote sensing data (optical, radar and digital elevation model), the Dehshir Fault, which is an active strike-slip fault, is detected. Remote sensing data are particularly important in radar extraction for geological and geomorphological applications. Radar data have been able to identify fault lines in almost all parts of the area due to their better interaction with surface phenomena. Optical data is not well capable as radar images for extracting fault line. By combining remote sensing techniques with fieldwork, you can achieve desirable results with lower cost and better accuracy.
Keywords: Automatic Linear Extraction, Dehshir Fault, Remote Sensing, Radar
Full-Text [PDF 1822 kb]   (747 Downloads)    
Type of Study: Tarviji | Subject: Photo&RS
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amiri A, Abdollahi Kakroodi A, Ghadimi M. Detection Dehshir Fault Lineaments Using Radar and Optical Remote Sensing Data. JGST. 2019; 9 (2) :51-64
URL: http://jgst.issge.ir/article-1-826-en.html


Volume 9, Issue 2 (12-2019) Back to browse issues page
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology