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Abstract 

The number of high resolution space imageries in photogrammetry and remote sensing society is growing 
fast. Although these images provide rich data, the lack of sensor calibration information and ephemeris data does 
not allow the users to apply precise physical models to establish the functional relationship between image space 
and object space. As an alternative solution, some generalized models such as global polynomials have been 
developed and used. This paper presents a hybrid method based on using imperialistic competitive algorithm 
(ICA) to find the best terms of global polynomials. The method was carried out for geometric correction of two 
different datasets, an IKONOS Geo-image and a SPOT image, with different number of ground control points 
(GCPs) and independent check points (ICPs). Results showed the success of achieving sub-pixel accuracies (0.2) 
for IKONOS and 2.5 pixels for SPOT image. The method was able to successfully handle over-optimization as it 
produces lower RMSEs compared to conventional approach. Also, the proposed method required much less time 
in comparison to other optimization algorithms like genetic algorithm (GA) and particle swarm optimization 
(PSO).   
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1. Introduction 

High resolution space imageries such as 
IKONOS and QuickBird have become very popular 
and useful in photogrammetry, remote sensing and 
civil applications. These images are often used for 
several purposes such as producing land cover 
maps, environmental monitoring and agricultural 
management (Hablb et al., 2007). To do these, the 
functional relationship between image space and 
object space must be established via sensor models 
which are typically classified as: Parametric 
(physical) models and Non-Parametric 
(generalized) models. Parametric models require 
the interior orientation and orbital parameters of the 
sensor to faithfully represent the geometry of the 
scene formation. These models are rigorous, proper 
for adjustment by analytical triangulation, and 
normally result in high modeling accuracy (Tao and 
Hu, 2001). The most popular one is the orbital 
parameter model which has been implemented by 
many authors for different tasks (Gugan, 1986; 
Fraser and Shao, 1996; Valadan Zoej and Petrie, 
1998). On the other hand, Non-Parametric models 
use general mathematical functions (such as global 
polynomials) to make the mentioned relationship. 
These models do not require neither interior 
orientation parameters nor orbital ephemeris 
information and are therefore independent of sensor 
platforms and sensor types. Non-Parametric models 
are extensively dependent on the distribution of 
GCPs instead and hence very sensitive to the terrain 
topography, number of GCPs and their distribution 
(Baghani, 2012). Recently, some investigations 
have been conducted for these models (Tao and Hu, 
2001, 2002; Dowman and Tao, 2002; Sadeghian 
and Delavar, 2003). 
    In many applications, due to the lack of sensor 
calibration information and the requirements for 
real time implementations, experts prefer to use 
non-parametric models for geometric correction of 
images and ignore the provided accuracy 
degradation (Tao and Hu, 2001). 2D global 
polynomials, 2D Projective and 2D Direct Linear 
Transformations are some examples of these 
models.  
    Term selection is the most important stage in 
using such models. In the conventional approach all 
terms are involved in the computational process 
which causes over-parameterization. To avoid this 
and find the most efficient terms, intelligent 
methods can be used, rather than trial and error 
which is highly time consuming and illogical.   
    Valadan Zoej et al. (2007) used genetic algorithm 
with different control parameter settings for rational 
functions optimization. The method was used for 
geometric correction of an IKONOS image with 
different number of GCPs. Results offered 
reduction of RMSE compared to conventional 
rational functions. Although, the presented 

algorithm was able to achieve sub-pixel accuracies, 
operational time of it was relatively high and not 
suitable for real time applications. Yavari et al. 
(2012) compared the particle swarm optimization 
and genetic algorithm for rational function models 
(RFMs) optimization. The methods were tested on 
an IKONOS Geo panchromatic image and also an 
image from Spot – 4 L1B. Although, the PSO 
algorithm was more efficient, the performance time 
of it was still high. Baghani (2012) used ant colony 
for RFMs optimization. The method was tested on a 
SPOT-L1A, SPOT-L1B and an IKONOS image in 
three different coordinates systems (CT, UTM and 
Geodetic). The thesis showed that the use of CT 
coordinate system yields higher accuracies in 
comparison to other two coordinate systems 
especially when few number of control points are 
used. The operational time for the method was 
considerably short with respect to similar 
algorithms like GA and PSO. Zhang et al. (2012) 
proposed a new RFM parameter optimization 
method based on scatter matrix and elimination 
transformation strategies. The method was tested on 
two data sets generated from SPOT-5 high-
resolution sensor. Results showed that the precision 
of the method, with about 35 essential parameters, 
was 10% to 20% higher than that of the 
conventional model with all 78 parameters. But the 
terrain-dependent RFM was not considered in their 
work. Tengfei et al. (2014) proposed a method 
which first converts the problem of solving rational 
polynomial coefficients (RPCs) into a multiple 
linear regression and then implements nested 
regression to select optimal RPCs automatically. 
Different types of images, including QuickBird, 
SPOT-5, Landsat-5, and ALOS were involved in 
their test. The method performed better than 
conventional solution and gained a stable and 
reliable answer with less than 39 GCPs. Jannati and 
Valadan Zoej (2015) introduced genetic 
modification to speed up the basic GA for optimal 
term selection of RFMs. The method defined a 
qualification coefficient to examine qualification of 
individual genes. Two different case studies were 
used to evaluate the performance of the proposed 
algorithm. Results indicated that the method 
required less iterations such that speed was 
improved by 20 times, while the accuracies were 
preserved. It is seen that solving RPCs is a 
multicollinearity problem which is often solved by 
variable selection. Indeed, the original model is 
simplified by selecting a subset of variables from 
the original set which give the most significant 
response to the regression, and hence reducing 
multicollinearity.    
    This paper uses an imperialistic competitive 
algorithm to select the best terms of global 
polynomials and consequently gain a near optimum 
solution. The general equation of global 
polynomials is: 
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ݔ ൌܻܽܺ


ୀ



ୀ

  (1) 

ݕ ൌܾܻܺ


ୀ



ୀ

  (2) 

 
Where ݔ and ݕ are image coordinates, ܺ and ܻ 

are ground coordinates and ܽ and ܾ are 
coefficients. Each term of the global polynomial 
models and removes a specific error of the image.  

The reminder of this paper is organized as 
follows: Section 2 describes the solution method 
and proposed algorithm problem. The solution 
procedure and heuristic approaches are presented in 
Section 3. Section 4 presents computational 
experiments and discussions. Section 5 includes 
concluding remarks and future researches. 
 
2. The solution method and proposed 
algorithm (ICA) 

 The imperialist competitive algorithm is a new 
evolutionary algorithm that was introduced by 
Atashpaz and Lucas (2007). Like any evolutionary 
algorithm, it starts with a random initial population 
and by creating supervised-random solutions it tries 
to attain more optimum results. The basic 
difference between ICA and other evolutionary 
algorithms is that instead of a natural or human 
base it uses a socio-political evolution process (i.e. 
imperialism). 

ICA begins with an initial population in which 
each individual is called a country. Some of the best 
countries (here solutions with minimum RMSE) in 
the population will be selected as imperialist and 
the other countries will be the colonies of this 
imperialists (regarding to the imperialist’s fitness). 
A set of one imperialist and its colonies is called an 
empire. After the formation of initial empires, as a 
procedure of imperialism, the colonies start to move 
toward their imperialist country, which causes 
improvements in socio-political aspects of colonies 
(e.g., culture, language and etc.). This means that 
the fitness of solutions related to the colonies will 
improve. The procedure of moving colonies toward 
imperialists is called assimilation. Sometimes it 
may cause a colony to become the imperialist of the 
related empire. As another natural procedure of 
imperialism, sometimes revolutions happen that 
cause sudden and unpredictable changes in colonies 
and as a result it may cause the colony become 
more powerful (this procedure expand the solution 
space and prevents the algorithm from sticking in a 
local optimum). After applying these procedures 
the total power of each empire is calculated. Any 
empire tries to get the possession of the colonies of 
other empires. The power of each empire depends 
on both the power of its imperialist country added 
to a percentage of mean power of its colonies. After 

the computation of empires power, the weakest 
colony in the weakest empire will be the possession 
of one of the empires depending on their power. 
This procedure goes on until the stop a criterion is 
satisfied (usually when there is only one empire that 
possesses the whole world and the imperialist of 
this empire is our desired solution). Fig. 1 shows 
the flowchart of ICA. 
 
3. Implementing ICA for best terms 
selection 

3.1 Initial population 

In this research the initial population includes N 
solutions that each one is a (1 × n) binary vector 
representing a random selection of terms we would 
like to use for the polynomial and ‘n’ is the number 
of terms we want to use. For instance, the solution 
vector shown in Fig. 2 implies that terms 1, 3, 6, 8 
and 11 are selected from terms 1-15. Therefore, the 
desired polynomials are: 

ݔ ൌ ܽ  ܽଶܻ  ܽହݕଶ  ܽݕݔଶ  ܽଵݔଷ(3) ݕ 

ݕ ൌ ܾ  ܾଶܻ  ܾହݕଶ  ܾݕݔଶ  ܾଵݔଷ(4) ݕ 

 

 
Fig. 1: The flowchart of ICA  

3.2 Generating the empires 

After the initial population is formed the fitness 
of each solution is computed. Then some of the 
solutions with better fitness (i.e., lowest RMSE) are 
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selected as imperialists (Nimp) and the reminder of 
solutions will be the colonies of this imperialists 
(Ncol = Npop – Nimp). Here and in Section 3.4 we 
have used the procedure applied by Moradi and 
Zandieh (2013). To distribute the colonies between 
imperialists proportionally, first we calculate the 
Nimp using related parameter (here PR) by Nimp = 
round (PR* Npop) then, normalized cost of nth 
imperialist is defined as:  

Normcost (i) = Cmax - Ci    i = 1, 2, …, Nimp (5) 

Where ܥ	the cost of nth imperialist and Cmax is 
the maximum cost in the population. Then the 
normalized power of each empire is defined by: 

(6)  impN= 1, 2, …,  i  
			ே௦௧	ሺሻ

∑ 			ே௦௧	ሺሻ
ಿ


= ܲ 	  

Thus the initial number of colonies of nth 
imperialist is about 

impN= 1, 2, …,  i )  colN*  ࡼ( Size(i) = round (7) 

    Hence stronger imperialists have more colonies 
while weaker ones have less. After defining the 
Size(i) for each imperialist, related number of 
colonies are chosen randomly from Ncol and assigned 
to them.  

3.3 The assimilation and revolution policy 

After the initial empires are formed, the 
colonies in each empire move toward their relevant 
imperialists. Considering the characteristics of our 
problem, the following procedure is used for 
assimilation (Nourmohammadi et al., 2013) 

 
1) Calculate the assimilation rate (AR) that 

depicts the percentage of similarity between 
the imperialist and the colony. 

2) Consider the vector of an imperialist and a 
colony. 

3) Generate a 1 × n vector of random 
numbers with uniform distribution from 
(0, 1). 

4) Compare each value of the random vector 
to AR. If the value is lower than AR 
change the related value in colony vector 
to the related value in imperialist vector 
(see Fig. 3). 

 
The revolution policy is somehow similar to 

mutation operators in GA by which the value of 
some element in solution vector randomly will 
be exchanged (see Fig. 4). In any iteration, a 
rate of colonies will revolt against their 

imperialists that may cause a colony to 
overcome its imperialist and become the 
imperialist of related empire. 

3.4 Empires evaluation, competition and 
elimination 

As a natural process of imperialism, the empires 
try to take the possession of the colonies in other 
empires. In so doing this competition, the power of 
more powerful empires increases and the power of 
weaker ones decreases. The competition process is 
done by picking some (usually one) of the weakest 
colonies in the weakest empire and making a 
competition among all of the empires. The empires 
have the chance to take the possession of this 
colonies regarding to their power. The power of 
each empire is the power of its imperialist added to 
a percentage of mean power of its colonies which is 
shown by the following equations:  

 α. mean (cost of + () cost = ࢋࡼ
colonies of the empire) 

(8) 

Now the normalized power of each empire is 
defined by:  

Norm_ ࢞ࢇ = ࢋࡼ  - (ࢋࡼ)
ࢋࡼ

(9) 

Thus the possession probability for each empire 
is defined by: 

࢘ࡼ = 
_࢘ࡺ ࢋࡼ

∑ _࢘ࡺ ࢋࡼ
 (10) 

Now the random vector R is formed in size of 
the number of empires with uniformly distributed 
numbers from (0, 1) and by simply subtracting Pr 
from R we have D = Pr – R. Now the mentioned 
colony (ies) is handed to an empire whose index D 
is maximum. In so doing this process, empires that 
remain with only their imperialist (empires with no 
colonies) will be eliminated. The algorithm will 
stop when the stop criteria is satisfied that’s usually 
when only one empire remains and its imperialist is 
the best solution obtained. 

 

4. Numerical results 

Two different datasets were used for this 
research: an IKONOS Geo panchromatic image 
over central Hamedan city, and a SPOT image 
covering Isfahan, both in Iran. The IKONOS image 
was acquired on 7 October 2000 with 20.4 degree 
off-nadir angle and 47.4 degree sun elevation. The 
elevation within the study area ranged from 1700 to 
1900 m. GCPs/ICPs for the test were extracted 
from NCC-produced digital maps, which employed 
a UTM projection on the WGS84 datum. 
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1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 

Fig. 2 : Example of a solution vector containing selected terms from 1-15 

 

A colony vector 1 0 0 1 0 0 
An imperialist vector 1 1 0 0 1 1 

Random vector 
(If AR = 0.5) 0.523 0.321 0.724 0.841 0.229 0.912 

New colony vector 1 1 0 1 1 0 
Fig. 3: The assimilation policy 

 

1 0 0 0 1 1 1 0 

  (Revolution policy)  

1 1 0 0 1 0 1 0 

Fig. 4: The revolution policy 

 
 The selected GCPs/ICPs in the imagery 

were distinct features (such as buildings and 
pools corners, and wall and roads crossings, 
etc.). The SPOT image but, is a Level 1A 

product acquired at June 1987 with 20.84 
degree off-   nadir angle. GCPs/ICPs of this 
data were measured using a dual frequency 
GPS system with sub-meter accuracy

Table 1: The RMSE values for two polynomials (15 and 21 terms)  
with two different combinations of GCPs and ICPs. RR= 0.1, P=0.1 and α=0.08, IKONOS imagery 

 Hybrid approach (using ICA in GPs) Conventional approach 

 Poly. 
terms 

Pop. size Aver. RMSE 
(m) 

Min. RMSE 
(m) 

Run Time 
(s) 

RMSE (m) 
Run Time 

(s) 

27 GCPs and 
47 ICPs 

15 

30 0.5115 0.5053 2.02 

1.746 0.25 40 0.5058 0.5053 4.92 

50 0.5053 0.5053 7.7 

21 

60 0.5311 0.5053 8.65 

2.112 0.40 80 0.4967 0.4625 13.1 

100 0.4911 0.4465 16.63 

35 GCPs and 
39 ICPs 

15 

30 0.4460 0.4216 1.62 

1.450 0.32 40 0.4310 0.4216 5.34 

50 0.4243 0.4216 6.3 

21 

60 0.2964 0.2756 9.22 

1.986 0.53 80 0.2826 0.2481 13.91 

100 0.2811 0.2391 17.87 
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Table 2: The RMSE values for two polynomials (15 and 21 terms)  
with two different combinations of GCPs and ICPs. RR= 0.1, P=0.1 and α=0.08, SPOT imagery 

 Hybrid approach (using ICA in GPs) Conventional approach 

 Poly. 
terms 

Pop. size Aver. 
RMSE (m) 

Min. RMSE 
(m) 

Run Time 
(s) 

RMSE (m) 
Run Time 

(s) 

18 GCPs and 
17 ICPs 

15 

30 30.893 30.426 1.31 

45.782 0.17 40 30.686 29.586 3.05 

50 30.320 29.586 6.14 

21 

60 28.691 26.437 10.95 

48.623 0.26 80 27.472 25.562 14.65 

100 27.620 25.562 18.37 

25 GCPs and 
10 ICPs 

15 

30 29.980 29.199 2.97 

41.053 0.21 40 29.167 28.317 5.45 

50 29.167 28.317 7.87 

21 

60 26.654 24.949 11.63 

46.744 0.33 80 26.599 25.837 17.37 

100 26.819 25.837 18.84 

 
The elevation within the study area ranged from 

528 to 1147 m. Figure 5 shows the distribution of 
GCPs/ICPs of both datasets. 

Two different set of GCPs/ICPs were fed 
through the ICAs with different parameter settings. 
Tables 1-2 represent the result for each image. In 
these tables, the first column shows the 
combination of GCPs/ICPs that was used. The next 
column is for the number of terms of polynomials 
that are involved in the optimization process. The 
third column represents the population size of the 
algorithm and the 4th and 5th column are average 
and minimum values of RMSE for 10 runs of 
algorithm respectively. The 6th column is the 
average required time of the algorithm to give the 
stated results. The last two columns are devoted to 
RMSE and Run Time of the conventional approach 
respectively. The parameters PR, P and α 
respectively denote the percentage of imperialists in 
each population, the percentage of revolution in 
empires and the percentage of mean power of 
colonies related to an empire in calculating its 
power.  

The algorithms were implemented in Matlab 
R2010b on a PC with a Duo CPU 2.40 GHz with 
4GB of RAM. The most efficient results by the 
hybrid approach offers 0.2391m and 24.949m 
RMSE for IKONOS and SPOT data respectively. It 
is apparent that the proposed method results in 
lower RMSEs than conventional approach (i.e. 
handling over-parameterization), but requires more 

time instead.  Increasing the number of GCPs gives 
more redundancy in equations and hence will 
decrease RMSEs as it is expected. But, increasing 
population size doesn’t make meaningful and 
practical changes in RMSEs, and even takes more 
time which makes this choice worthless as a way to 
gain better accuracies. Instead, it will be much 
more effective to use higher terms of polynomials.  

The selected terms of global polynomials were 
not exactly the same for each image, but as a 
general view, the frequency of each term to be 
chosen in 120 tests is shown in figure 6.  

The IKONOS data has been tested by PSO and 
GA in Yavari et al. (2012). The population size of 
GA was 50 and that of PSO was 30. The paper has 
tested different combinations of GCPs/ICPs which 
we use the one with 35 GCPs and 39 ICPs. A 
relative comparison of reported results proves the 
high efficiency of ICA in terms of both calculated 
RMSE and the required time. The values of PSO 
and GA for RMSE were 0.62m and 0.60m 
respectively while ICA achieved 0.44m and 0.42m 
with Pop. Sizes of 50 and 30 respectively. The 
required time of ICA is averagely 673 times less 
than GA and 1158 times less than PSO. Table 3 
shows a summary of comparing ICA, GA and PSO 
results on the IKONOS data. 
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(a) (b) 

Fig. 5: Distribution of GCPs/ICPs: (a) SPOT image, (b) IKONOS-Geo Image 
                                                       
 

 
 

Fig. 6 :The frequency of each term to be chosen in 120 tests of the algorithm on both datasets 
 
 

Table 3: The summary of comparing the results of GA, PSO and ICA, IKONOS data 

Optimization algorithm Number of GCPs and ICPs Aver. RMSE in 10 runs (m) Run time (s) 

GA (Pop. Size = 50) 35 & 39 0.60 4240 

ICA (Pop. Size = 50) 35 & 39 0.42 6.3 

PSO (Pop. Size = 30) 35 & 39 0.62 1876 

ICA (Pop. Size = 30) 35 & 39 0.44 1.62 

 

 
5. Conclusions and future work 

Due to the lack of sensor calibration and orbital 
parameters of high resolution imageries, non-
parametric sensor models have become an 
attractive solution for photogrammetry and remote 
sensing experts.      The main problem of such 
models is to find the best terms involved in the 
mathematical transformations. One of the most 
common non-parametric models is global 
polynomials.   In this paper, Imperialistic 
Competitive Algorithm (ICA) has been used for 
determining the best terms of this model for 
geometric correction of an IKONOS and a SPOT 
image. Results showed the success of this method 
to overcome the over-parameterization problem 

regarded with conventional approaches (1-1.7m 
improvement in RMSE for IKONOS image and 20-
25m for SPOT image). It is apparent that using 
more GCPs leads to better results, although their 
distribution must kept somehow uniform to ensure 
that the whole image has been covered. Results also 
suggest that increasing population size doesn’t 
practically and meaningfully help to gain better 
accuracies while consuming more time. 
Implementing higher terms of polynomials would 
be a better choice to gain lower RMSEs. A relative 
comparison of the proposed method with GA and 
PSO proves its efficiency in terms of both 
calculated RMSEs and the required run time.  

An interesting future research work may be the 
best selection of GCPs to be used besides the best 
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selection of terms using evolutionary algorithms. 
This way, the process would be more automated 
and more optimized. 

Acknowledgment 

Authors would like to acknowledge M. 
Mokhtarzadeh and M. Jannati for providing the 

required data and E. Zanjanipour for her advices for 
this research. Also, the authors would like to 
sincerely thank the editor and the reviewers for 
their valuable constructive suggestions in revising 
this paper. 

 

References 

[1] A. Baghani. Rational function models optimization using ant colony algorithm, MSc Thesis, K.N Toosi 
University of Technology, Tehran, Iran, 2012. 
 

[2] A. Nourmohammadi, M. Zandieh and R. Tavakkoli-moghaddam. An imperialist competitive algorithm for multi-
objective U-type assembly line design, Journal of Computational Science, 2013; 4: 393–400. 

[3] A. Hablb, S. W. Shin, K. Klm, C. Klm, K. Bang, E-M. Kim and D-C. Lee. Comprehensive analysis of sensor 
modeling alternatives for high resolution imaging satellites, Photogrammetric Engineering & Remote 
Sensing, 2007; 73(11): 1241–1251. 

[4] I. Dowman, C. V. Tao, An update on the use of rational functions for photogrammetric restitution, ISPRS 
Highlights, 2002; 7 (3): 22–29. 

[5] E. Atashpaz and C. Lucas. Imperialist competitive algorithm: an algorithm for optimization inspired by 
imperialistic competition, Proceedings IEEE Congress on Evolutionary Computation, 2007; 4661–4667. 

[6] C. S.  Fraser, J. Shao. Exterior orientation determination of MOMS-O2 three line imagery: experiences with 
the Australian test field data, International Archive of Photogrammetry and Remote Sensing, 1996; 31 (B3): 
207–214. 

[7] D. J. Gugan. Practical aspects of topographic mapping from SPOT imagery, Journal of Photogrammetric 
Record, 1986; 12 (69): 349–355. 

[8] H. Moradi and M. Zandieh. An imperialist competitive algorithm for a mixed-model assembly line 
sequencing problem, Journal of Manufacturing Systems, 2013; 32: 46– 54. 

[9] L. Tengfei, J. Weili, and H. Guojin. Nested regression based optimal selection (NRBOS) of rational 
polynomial coefficients, Photogrammetric Engineering and Remote Sensing, 2014; 80 (3): 261-269  

[10] M. Jannati and M. J. Valadan Zoej. Introducing genetic modification concept to optimize rational function 
models (RFMs) for georeferencing of satellite imagery, GIScience and Remote Sensing, 2015; 52 (4): 510-
525 

[11] M. J. Valadan Zoej, M. Mokhtarzadeh, A. Mansourian, H. Ebadi and S. Sadeghian. Rational function 
optimization using genetic algorithms, International Journal of Applied Earth Observation and 
Geoinformation, 2007; 9: 403-413. 

[12] S. Sadeghian, M. Delavar. An investigation of geometric correction and uncertainty assessment of high 
resolution images, Second International Symposium on Spatial Data Quality, Hong Kong, China, 2003, 89–
99. 

[13] S. Yavari, M. J. Valadan Zoej, M. Mokhtarzadeh and A. Mohammadzadeh. Comparison of particle swarm 
optimization and genetic algorithm in rational function model optimization, XXII ISPRS Congress, 
Melbourne, Australia, 2012. 

[14] C. V. Tao, Y. Hu, A comprehensive study of the rational function model photogrammetric processing. 
Photogrammetric Engineering and Remote Sensing, 2001; 67 (12): 1347–1357. 

[15] C. V. Tao, Y. Hu. 3D construction methods based on the rational function model. Photogrammetric 
Engineering and Remote Sensing, 2002; 68 (7): 705–714. 

[16] M. J. Valadan Zoej, G. Petrie. Mathematical modeling and accuracy testing of SPOT level 1B stereo pairs, 
Journal of Photogrammetric Record, 1998; 16 (91): 67–82. 

[17] Y. Zhang, Y. Lu, L. Wang, and X. Huang. A new approach on optimization of the rational function model of 
high-resolution satellite imagery, IEEE transactions of geoscience and remote sensing, 2012; 50 (7); 2758-
2764 

 


