1. Acharya, P., Barik, G., Gayen, B.K., Bar, S., Maiti, A., Sarkar, A., Ghosh, S., De, S.K., Sreekesh, S., 2021. Revisiting the levels of Aerosol Optical Depth in south-southeast Asia, Europe and USA amid the COVID-19 pandemic using satellite observations. Environmental Research 193, 110514. [ DOI:10.1016/j.envres.2020.110514] 2. Aggarwal, C.C., 2018. Neural networks and deep learning. Springer 10, 978-3. [ DOI:10.1007/978-3-319-94463-0] 3. Delavar, M.R., Gholami, A., Shiran, G.R., Rashidi, Y., Nakhaeizadeh, G.R., Fedra, K., Hatefi Afshar, S., 2019. A Novel Method for Improving Air Pollution Prediction Based on Machine Learning Approaches: A Case Study Applied to the Capital City of Tehran. ISPRS International Journal of Geo-Information 8, 99. [ DOI:10.3390/ijgi8020099] 4. Djebbri, N., Rouainia, M., 2017. Artificial neural networks based air pollution monitoring in industrial sites, in: Engineering and Technology (ICET), 2017 International Conference On. IEEE, pp. 1-5. [ DOI:10.1109/ICEngTechnol.2017.8308151] 5. Dominici, F., McDermott, A., Daniels, M., Zeger, S.L., Samet, J.M., 2003. Mortality among residents of 90 cities. Special Report: Revised Analyses of Time-Series Studies of Air Pollution and Health 9-24. 6. Dominici, F., Peng, R.D., Bell, M.L., Pham, L., McDermott, A., Zeger, S.L., Samet, J.M., 2006. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. Jama 295, 1127-1134. [ DOI:10.1001/jama.295.10.1127] 7. Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., Wang, J., 2015. Artificial neural networks forecasting of PM2. 5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmospheric Environment 107, 118-128. [ DOI:10.1016/j.atmosenv.2015.02.030] 8. García-Chan, N., Alvarez-Vázquez, L.J., Martínez, A., Vázquez-Méndez, M.E., 2021. Bilevel optimal control of urban traffic-related air pollution by means of Stackelberg strategies. Optim Eng. [ DOI:10.1007/s11081-021-09636-w] 9. Ghahremanloo, M., Choi, Y., Sayeed, A., Salman, A.K., Pan, S., Amani, M., 2021. Estimating daily high-resolution PM2. 5 concentrations over Texas: Machine Learning approach. Atmospheric Environment 247, 118209. [ DOI:10.1016/j.atmosenv.2021.118209] 10. Holland, J.H., 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, Complex Adaptive Systems. A Bradford Book, Cambridge, MA, USA. [ DOI:10.7551/mitpress/1090.001.0001] 11. Kaufman, Y.J., Tanré, D., Boucher, O., 2002. A satellite view of aerosols in the climate system. Nature 419, 215-223. [ DOI:10.1038/nature01091] 12. Kaveh, M., Mesgari, M.S., 2019. Improved biogeography-based optimization using migration process adjustment: An approach for location-allocation of ambulances. Computers & Industrial Engineering 135, 800-813. [ DOI:10.1016/j.cie.2019.06.058] 13. Lepeule, J., Laden, F., Dockery, D., Schwartz, J., 2012. Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environmental health perspectives 120, 965-970. [ DOI:10.1289/ehp.1104660] 14. Li, J., Heap, A.D., 2011. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics 6, 228-241. [ DOI:10.1016/j.ecoinf.2010.12.003] 15. Li, R., Ma, T., Xu, Q., Song, X., 2018. Using MAIAC AOD to verify the PM2.5 spatial patterns of a land use regression model. Environmental Pollution 243, 501-509. [ DOI:10.1016/j.envpol.2018.09.026] 16. Li, X., Zhang, X., 2019. Predicting ground-level PM2. 5 concentrations in the Beijing-Tianjin-Hebei region: A hybrid remote sensing and machine learning approach. Environmental Pollution 249, 735-749. [ DOI:10.1016/j.envpol.2019.03.068] 17. Lops, Y., Pouyaei, A., Choi, Y., Jung, J., Salman, A.K., Sayeed, A., 2021. Application of a Partial Convolutional Neural Network for Estimating Geostationary Aerosol Optical Depth Data. Geophysical Research Letters 48, e2021GL093096. [ DOI:10.1029/2021GL093096] 18. Mahiyuddin, W.R.W., Sahani, M., Aripin, R., Latif, M.T., Thach, T.-Q., Wong, C.-M., 2013. Short-term effects of daily air pollution on mortality. Atmospheric environment 65, 69-79. [ DOI:10.1016/j.atmosenv.2012.10.019] 19. Morley, D.W., Gulliver, J., 2018. A land use regression variable generation, modelling and prediction tool for air pollution exposure assessment. Environmental Modelling & Software 105, 17-23. [ DOI:10.1016/j.envsoft.2018.03.030] 20. Ni, X., Cao, C., Zhou, Y., Cui, X., P Singh, R., 2018. Spatio-temporal pattern estimation of PM2. 5 in Beijing-Tianjin-Hebei Region based on MODIS AOD and meteorological data using the back propagation neural network. Atmosphere 9, 105. [ DOI:10.3390/atmos9030105] 21. Pochwała, S., Anweiler, S., Deptuła, A., Gardecki, A., Lewandowski, P., Przysiężniuk, D., 2021. Optimization of air pollution measurements with unmanned aerial vehicle low-cost sensor based on an inductive knowledge management method. Optim Eng 22, 1783-1805. [ DOI:10.1007/s11081-021-09668-2] 22. Pope Iii, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama 287, 1132-1141. [ DOI:10.1001/jama.287.9.1132] 23. Rarità, L., Stamova, I., Tomasiello, S., 2021. Numerical schemes and genetic algorithms for the optimal control of a continuous model of supply chains. Applied Mathematics and Computation 388, 125464. [ DOI:10.1016/j.amc.2020.125464] 24. Rostami, O., Kaveh, M., 2021. Optimal feature selection for SAR image classification using biogeography-based optimization (BBO), artificial bee colony (ABC) and support vector machine (SVM): a combined approach of optimization and machine learning. Computational Geosciences 25, 911-930. [ DOI:10.1007/s10596-020-10030-1] 25. Sathe, Y., Kulkarni, S., Gupta, P., Kaginalkar, A., Islam, S., Gargava, P., 2019. Application of Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) and Weather Research Forecasting (WRF) model meteorological data for assessment of fine particulate matter (PM2. 5) over India. Atmospheric Pollution Research 10, 418-434. [ DOI:10.1016/j.apr.2018.08.016] 26. Wang, Q., Zeng, Q., Tao, J., Sun, L., Zhang, L., Gu, T., Wang, Z., Chen, L., 2019. Estimating PM2. 5 concentrations based on MODIS AOD and NAQPMS data over Beijing-Tianjin-Hebei. Sensors 19, 1207. [ DOI:10.3390/s19051207] 27. Wang, X., Yuan, J., Wang, B., 2021. Prediction and analysis of PM2. 5 in Fuling District of Chongqing by artificial neural network. Neural Computing and Applications 33, 517-524. [ DOI:10.1007/s00521-020-04962-z] 28. Yang, F.M., Ma, Y.L., He, K.B., 2000. A brief introduction to PM2. 5 and related research. World Environ 4, 33-35. 29. Yang, Z., Zdanski, C., Farkas, D., Bang, J., Harris Williams, 2020. Evaluation of Aerosol Optical Depth (AOD) and PM2.5 associations for air quality assessment. Remote Sensing Applications: Society and Environment 20, 100396. [ DOI:10.1016/j.rsase.2020.100396] 30. Zhang, H., Kondragunta, S., 2021. Daily and hourly surface PM2. 5 estimation from satellite AOD. Earth and Space Science 8, e2020EA001599. [ DOI:10.1029/2020EA001599]
|