:: Volume 12, Issue 2 (1-2023) ::
JGST 2023, 12(2): 192-205 Back to browse issues page
Evaluating the importance of dynamic allocation and routing of rescuers in reducing response time
Peyman Karami, Mahmoud reza Delavar *, Mir abolfazl Mostafavi
Abstract:   (450 Views)
Due to delay in receiving emergency medical services, a high number of injured people and patients annually lose their lives. Determining the medical service area and correct routing of rescuing operation is influential on the reduction of rescuers’ response time. Changing the traffic flow leads to change of medical service area. Therefore, it is expected that by observing changing traffic, the service area of any hospital would be updated. Using the required hardware and software equipment, which observe traffic flow, would be pricey. In order to utilize such equipment, it is required to have information about the degree of effect of traffic dynamic changes on reducing the service time to the demand points.
In this research, the allocation of medical center services using static traffic data was evaluated against the allocation with dynamic traffic data on different days and hours. Then, the influence of different regional areas from traffic changes was investigated. Genetic and particle swarm optimization meta-heuristic algorithms were used in the allocation of services, then the average access time (or response time) to all demand points and border points were investigated separately in the 5th district of Tehran. According to the results, the average response time to all demand points when using static traffic data was 13.4% more than the response time to the same points when using dynamic traffic data. Also, while allocation with static traffic data, the average response time to border points (checkpoints) was 34.2% equivalent to 69 seconds more than allocation with dynamic traffic data. These results reveal an increase in response time delay to border points when services allocation with static traffic data. In addition, in the afternoon hours of the day, which coincide with the increase in requests for assistance, the difference in response time to the demand points during service allocation with static and dynamic traffic data increased. The research results show the important role of dynamic allocation in service improvement.
Article number: 14
Keywords: dynamic allocation, emergency medical services, medical center, hospital service area, response time
Full-Text [PDF 933 kb]   (254 Downloads)    
Type of Study: Research | Subject: GIS
1. Billhardt, H., Lujak, M., Sánchez-Brunete, V., Fernández, A. & Ossowski, S. (2014). Dynamic coordination of ambulances for emergency medical assistance services. Knowledge-Based Systems, 70, 268-280.‌ [DOI:10.1016/j.knosys.2014.07.006]
2. Wang, Z. & Zlatanova, S. (2016). Multi agent-based path planning for first responders among moving obstacles. Computers, Environment and Urban Systems, 56, 48-58.‌ [DOI:10.1016/j.compenvurbsys.2015.11.001]
3. Pour Mohammad J. (2018). Locating medical aid centers in urban areas considering the probability of accidents and response time. 3rd National Conference on New Ideas in Engineering (in Persian).
4. Elvik, R., Vaa, T., Hoye, A. & Sorensen, M. (Eds.). (2009). The handbook of road safety measures. Emerald Group Publishing.‌ [DOI:10.1108/9781848552517]
5. Wilde, E. T. (2013). Do emergency medical system response times matter for health outcomes? Health economics, 22(7), 790-806.‌ [DOI:10.1002/hec.2851]
6. Yu, W., Chen, Y., Chen, Z., Xia, Z. & Zhou, Q. (2020). Service area delimitation of fire stations with fire risk analysis: Implementation and case study. International journal of environmental research and public health, 17(6), 2030.‌ [DOI:10.3390/ijerph17062030]
7. Azimi, S., Delavar, M. R., & Rajabifard, A. (2018). An optimized multi agent-based modeling of smart rescue operation. Int. Arch. photogrammetry and remote sensing. Spat. Inf. Sci, 42, 93-100.‌ [DOI:10.5194/isprs-archives-XLII-3-W4-93-2018]
8. Cambridge Systematics, Texas Transportation Institute, Univ. of Washington, and Dowling Associates. (2003). Providing a highway system with reliable travel times. Transportation Research Board.
9. Ai, T., Yu, W. & He, Y. (2015). Generation of constrained network Voronoi diagram using linear tessellation and expansion method. Computers, Environment and Urban Systems, 51, 83-96.‌ [DOI:10.1016/j.compenvurbsys.2015.02.001]
10. Bolouri, S., Vafaeinejad, A., Alesheikh, A. & Aghamohammadi, H. (2019). investigating the effect of capacity criterion on the optimal allocation of emergency facilities in GIS environment. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.‌ [DOI:10.5194/isprs-archives-XLII-4-W18-211-2019]
11. Mills, A. F., Argon, N. T. & Ziya, S. (2018). Dynamic distribution of patients to medical facilities in the aftermath of a disaster. Operations Research, 66(3), 716-732.‌ [DOI:10.1287/opre.2017.1695]
12. Rezapour, S., Naderi, N., Morshedlou, N. & Rezapourbehnagh, S. (2018). Optimal deployment of emergency resources in sudden onset disasters. International Journal of Production Economics, 204, 365-382.‌ [DOI:10.1016/j.ijpe.2018.08.014]
13. Sharma, B., Ramkumar, M., Subramanian, N. & Malhotra, B. (2019). Dynamic temporary blood facility location-allocation during and post-disaster periods. Annals of Operations Research, 283(1), 705-736.‌ [DOI:10.1007/s10479-017-2680-3]
14. Yue, Y., Marla, L. & Krishnan, R. (2012). An efficient simulation-based approach to ambulance fleet allocation and dynamic redeployment. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 26, No. 1, pp. 398-405).‌ [DOI:10.1609/aaai.v26i1.8176]
15. Ankrah, R., Lacroix, B., McCall, J., Hardwick, A., & Conway, A. (2019, June). Introducing the Dynamic Customer Location-Allocation Problem. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 3157-3164). IEEE.‌ [DOI:10.1109/CEC.2019.8790150]
16. Aringhieri, R., Bruni, M. E., Khodaparasti, S. & van Essen, J. T. (2017). Emergency medical services and beyond: Addressing new challenges through a wide literature review. Computers & Operations Research, 78, 349-368.‌ [DOI:10.1016/j.cor.2016.09.016]
17. Zhu, H. H., Yan, H. W. & Li, Y. (2008). An optimization method for the layout of public service facilities based on Voronoi diagrams. Science of Surveying and Mapping, 33(2), 72-74.‌
18. Lee, I. & Lee, K. (2009). A generic triangle-based data structure of the complete set of higher order Voronoi diagrams for emergency management. Computers, Environment and Urban Systems, 33(2), 90-99.‌ [DOI:10.1016/j.compenvurbsys.2009.01.002]
19. Cui, H., Wu, L., Hu, S., & Lu, R. (2021). Measuring the service capacity of public facilities based on a dynamic Voronoi diagram. Remote Sensing, 13(5), 1027.‌ [DOI:10.3390/rs13051027]
20. Uno, T., Kato, K. & Katagiri, H. (2007, April). An application of interactive fuzzy satisficing approach with particle swarm optimization for multiobjective emergency facility location problem with a-distance. In 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (pp. 368-373). IEEE.‌ [DOI:10.1109/MCDM.2007.369115]
21. Kaveh, M., Kaveh, M., Mesgari, M. S. & Paland, R. S. (2020). Multiple criteria decision-making for hospital location-allocation based on improved genetic algorithm. Applied Geomatics, 12(3), 291-306.‌ [DOI:10.1007/s12518-020-00297-5]
22. Demetrescu, C. & Italiano, G. F. (2006). Fully dynamic all pairs shortest paths with real edge weights. Journal of Computer and System Sciences, 72(5), 813-837.‌ [DOI:10.1016/j.jcss.2005.05.005]
23. Pourrahmani, E., Delavar, M. R., Pahlavani, P. & Mostafavi, M. A. (2015). Dynamic evacuation routing plan after an earthquake. Natural Hazards Review, 16(4), 04015006.‌ [DOI:10.1061/(ASCE)NH.1527-6996.0000183]
24. Zaroliagis, C. D. (2002). Implementations and experimental studies of dynamic graph algorithms. In Experimental algorithmics (pp. 229-278). Springer, Berlin, Heidelberg.‌ [DOI:10.1007/3-540-36383-1_11]
25. Talarico, L., Meisel, F. & Sörensen, K. (2015). Ambulance routing for disaster response with patient groups. Computers & Operations Research, 56, 120-133.‌ [DOI:10.1016/j.cor.2014.11.006]
26. Pattanamekar, P., Park, D., Rilett, L. R. Lee, J., & Lee, C. (2003). Dynamic and stochastic shortest path in transportation networks with two components of travel time uncertainty. Transportation Research Part C: Emerging Technologies, 11(5), 331-354.‌ [DOI:10.1016/S0968-090X(03)00029-9]
27. Wuest, B. A. & Mioc, D. (2007, May). Visualization and modeling of traffic congestion in urban environments. In 10th AGILE International Conference on Geographic Information Science. Department of Geodesy and Geomatics, University of New Brunswick Canada.‌
28. Pourrahmani, E., Delavar, M. R. & Pahlavani, P. An Urban Evacuation Routing Plan for an Emergency Response System Using Real-Time Traffic Data.‌
29. Erkat J, Zamani S, Quds P. (2014). Location-routing for emergency facilities considering destruction probabilities for communication paths in crises. Crisis Management (in Persian).
30. Nha, V. T. N., Djahel, S. & Murphy, J. (2012, November). A comparative study of vehicles' routing algo
31. rithms for route planning in smart cities. In 2012 First international workshop on vehicular traffic management for smart cities (VTM) (pp. 1-6). IEEE.‌
32. Aghamohammadi, H., Mesgari, M. S., Molaei, D. & Aghamohammadi, H. (2013). Development a heuristic method to locate and allocate the medical centers to minimize the earthquake relief operation time. Iranian journal of public health, 42(1), 63.‌
33. Abolhoseini, S., Mesgari, S. M., & Mohammadi Soleimani, R. (2021). Modified particle swarm optimization algorithm to solve location problems on urban transportation networks (Case study: Locating traffic police kiosks). Engineering Journal of Geospatial Information Technology (in Persian), 8(3), 1-19.‌ [DOI:10.52547/jgit.8.3.1]
34. Farahani, R. Z., & Hekmatfar, M. (Eds.). (2009). Facility location: concepts, models, algorithms and case studies. Springer Science & Business Media.‌ [DOI:10.1007/978-3-7908-2151-2]
35. Cooper, L. (1963). Location-allocation problems. Operations research, 11(3), 331-343.‌ [DOI:10.1287/opre.11.3.331]
36. ReVelle, C. S., & Swain, R. W. (1970). Central facilities location. Geographical analysis, 2(1), 30-42.‌ [DOI:10.1111/j.1538-4632.1970.tb00142.x]
37. Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations research, 12(3), 450-459.‌ [DOI:10.1287/opre.12.3.450]
38. White, J. A., & Case, K. E. (1974). On covering problems and the central facilities location problem. Geographical Analysis, 6(3), 281-294.‌ [DOI:10.1111/j.1538-4632.1974.tb00513.x]
39. Erwig, M. (2000). The graph Voronoi diagram with applications. Networks: An International Journal, 36(3), 156-163.‌ https://doi.org/10.1002/1097-0037(200010)36:3<156::AID-NET2>3.0.CO;2-L [DOI:10.1002/1097-0037(200010)36:33.0.CO;2-L]
40. Li, X., Chen, J., Zhao, L., Guo, S., Sun, L., & Zhao, X. (2020). Adaptive distance-weighted Voronoi tessellation for remote sensing image segmentation. Remote Sensing, 12(24), 4115.‌ [DOI:10.3390/rs12244115]
41. Zheng, S., & Zheng, J. (2014). Assessing the completeness and positional accuracy of OpenStreetMap in China. In Thematic cartography for the society (pp. 171-189). Springer, Cham.‌ [DOI:10.1007/978-3-319-08180-9_14]
42. Melanie M. (1999) An introduction to genetic algorithms. A Bradford book. The MIT Press Cambridge, MA.
43. Lins, I. D. & Droguett, E. L. (2011). Redundancy allocation problems considering systems with imperfect repairs using multi-objective genetic algorithms and discrete event simulation. Simulation Modelling Practice and Theory, 19(1), 362-381.‌ [DOI:10.1016/j.simpat.2010.07.010]
44. Sivanandam, S. N. & Deepa, S. N. (2008). Genetic algorithm optimization problems. In Introduction to genetic algorithms (pp. 165-209). Springer, Berlin, Heidelberg.‌ [DOI:10.1007/978-3-540-73190-0_7]
45. Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the sixth international symposium on micro machine and human science (pp. 39-43). Ieee.‌
46. Wang, D., Tan, D. & Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft computing, 22(2), 387-408.‌ [DOI:10.1007/s00500-016-2474-6]
47. Goldberg JB. (2004). Operations research models for the deployment of emergency services vehicles. EMS management Journal. 1(1), 20-39.
48. Azaimi P, Mansouri M (2018). Simulation of dispatching and allocation of ambulances for emergency medical services in urban areas. The 16th International Industrial Engineering Conference, Tehran (in Persian).
49. Alivand M, Malek M R, Al_shikh A A. (1386). A distributed traffic management system in mobile network platform. The first urban spatial information systems conference (in Persian).
50. Church, R. L., & ReVelle, C. S. (1976). Theoretical and computational links between the p‐median, location set‐covering, and the maximal covering location problem. Geographical Analysis, 8(4), 406-415.‌ [DOI:10.1111/j.1538-4632.1976.tb00547.x]
51. Soltanpour, A., Baroughi, F., & Alizadeh, B. (2021). A hybrid algorithm for the uncertain inverse P-median location problem. Facta Universitatis. Series: Mathematics and Informatics, 1399-1416.‌ [DOI:10.22190/FUMI2005399S]
52. Ndiaye, F., Ndiaye, B. M. & Ly, I. (2012). Application of the p-median problem in school allocation.‌ [DOI:10.4236/ajor.2012.22030]
53. Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.‌ [DOI:10.7551/mitpress/3927.001.0001]
54. Santosa, B. (2006). Tutorial particle swarm optimization. Sukolilo Surabaya: Kampus ITS, 66.‌
55. Juneja, M. & Nagar, S. K. (2016, October). Particle swarm optimization algorithm and its parameters: A review. In 2016 International Conference on Control, Computing, Communication and Materials (ICCCCM) (pp. 1-5). IEEE.‌ [DOI:10.1109/ICCCCM.2016.7918233]
56. Robinson, J., Sinton, S. & Rahmat-Samii, Y. (2002, June). Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna. In IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313) (Vol. 1, pp. 314-317). IEEE.‌

XML   Persian Abstract   Print

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 12, Issue 2 (1-2023) Back to browse issues page